Dec. 12, 2012 ? Researchers at The Open University have devised a new method to understand the processes that happen when atoms cool which could lead to new materials for superconducting power grids and widespread use of magnetic resonance imaging (MRI).
In a paper, "Bilayers of Rydberg atoms as a quantum simulator for unconventional superconductors" just published in Physical Review Letters, Dr Jim Hague and Dr Calum McCormick at The Open University's Department of Physical Sciences describe a new method to understand the cooling of atoms, which is to simulate a superconductor using a "quantum simulator" (a kind of bespoke quantum computer for examining specific problems) rather than a supercomputer.
The researchers found that just such a simulator can be built to examine atoms cooled to just a millionth of a degree above absolute zero. The atoms are controlled using laser beams which enhance the electrical forces between the atoms, which are usually weak and unimportant. These forces mimic the physics of the superconductor, and the proposed simulator includes far more physical detail than ever before.
"The problem is that up to now nobody knew how to build such a material because physics of the best superconductors are extremely difficult to understand," said Dr Hague. "By studying the atoms in the quantum simulator, we expect that it will be possible to make major progress in unravelling the underlying theory of these fascinating materials. A superconductor (a material with no electrical resistance) operating close to room temperature would offer potentially revolutionary technology."
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Open University.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- J. Hague, C. MacCormick. Bilayers of Rydberg Atoms as a Quantum Simulator for Unconventional Superconductors. Physical Review Letters, 2012; 109 (22) DOI: 10.1103/PhysRevLett.109.223001
Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
Source: http://feeds.sciencedaily.com/~r/sciencedaily/most_popular/~3/V7M0RGpPblQ/121212111017.htm
roland martin whitney houston dead at 48 whitney houston dead 2012 whitney houston passed away heartbreak hotel don cornelius whitney houston i will always love you
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.